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Abstract 

Nowadays the challenge of the development of elevator systems involves the improvement of the 

quality and quantity of service to provide the passengers the minimum waiting or travelling time, 

or to reduce the consumption of power in a group of elevators system through elevator traffic 

analysis. The design of elevator system is based on determining the number, speed and capacity 

of elevators. Elevator traffic analysis depends mainly on the calculation of the Round trip time, 

therefore in this report a Monte Carlo Markov Chain simulation method is introduced to 

calculate the round trip time under incoming (up-peak) traffic conditions and with the 

assumptions of equal number of floor population, equal floor heights and a top speed that is 

attained in a one floor journey. 

 

Monte Carlo Markov Chain simulation method is a numerical probabilistic method based on a 

large number of trials to approach the exact value. The availability of powerful computing 

programs that are easily accessed by computers and laptops, that is spread everywhere and exist 

almost in every house, made it practical and easy to use the Monte Carlo Markov Chains 

simulation in evaluating the round trip time value of elevator systems, where it is easy to run tens 

of thousands of simulation runs within fractions of a second.   

 

Another simulation method; Monte Carlo Simulation method, is also presented in this report, 

where the results of this method is compared to the Monte Carlo Markov chains simulation 

method. Results of the simulation show that the Monte Carlo Markov Chains method is better 

than the Monte Carlo method where the Monte Carlo Markov chains method gives very accurate 

value and with easiness of software simulation and a less number of trials compared to the 

number of trials required for satisfactory result using the Monte Carlo Simulation method. 

 

The power of the Monte Carlo Markov Chains simulation method is that it is easy to develop it 

for calculating the round trip time if either one or more of the assumptions of equal floor heights, 

equal floor population and that the top speed is attained in a one floor journey were dropped. 
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Chapter One 

 

Introduction to the design of elevator systems 
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1.1 History of elevators 

The elevator is a lifting device that is moved vertically to transport people or things up or down 

along a vertical shaft. The shaft is usually made of cables, motor and the operating equipments. 

See figure 1.1. 

 

Figure 1.1: Elevator’s shaft 

 

Elevators were developed through history from a simple lift powered by animals, water wheels 

power or even by hand to a lift powered by hoist and afterwards powered by a steam. Then the 

development of elevators continued to after that becomes powered by electricity. The 

development of industries and the need for transporting of materials in factories was mainly the 

reason of developing of elevators systems.[1]. Also, the production of Electrical elevators 

revolutionized the use of elevators in industries and buildings up to this level that we have today, 

see figure 1.2. 

 

 

Figure 1.2: An old and a new kind of elevators  
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1.2 Elevator Traffic Analysis 

1.2.1 Elevator traffic analysis definition 

Elevator traffic analysis is studying and analyzing the performance of a group of elevators based 

on assumptions about the expected traffic situation. 

The objective of elevator traffic analysis is to find the suitable elevators that satisfy the 

performance desired for a building; number, velocity and capacitance of elevators will be 

determined. 

The main performance measurements are quantity of service and quality of service, where the 

quantity of service refers to the handling capacity and the quality of service refers to the interval. 

 Handling Capacity is the percentage of the building population that the group of elevators 

can support in a given time period (usually in 5 minutes). 

 Interval is the average time between the arriving of tow elevators, and it can be a good 

measure of the waiting time of the passengers at the main floor. see figure.1.3. 

                    

                                        Figure 1.3: Waiting time 

The elevator traffic analysis is based on assumptions about the movement of the building 

population, for example when and where do they enter or leave and are there facilities like 

restaurants, gyms…etc in the building that affects the usual passengers flowing in and out.  

If the assumptions of population movement in the building were accurate, then the results of the 

traffic analysis will be accurate too, because then we can make an accurate calculation of the 

elevator performance. 

The outputs of a traffic analysis will give an accurate indication of the quality and quantity of the 

elevator service provided, like the calculation of waiting times and the percentage of the building 

population that can be transported by the elevators in a given period of time. 
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Elevator traffic analysis is used in the design of new buildings or existing buildings. In new 

buildings it is used in the design of elevators to know the size, speed and capacity of elevators 

needed to provide the quantity and quality levels of service required. 

For existing buildings elevator traffic analysis are used to predict the effect of changes in a 

building’s population or configuration on the elevator service, because the population of building 

is often increased and sometimes some features are added to it or changed like restaurants, 

gyms…etc.  These changes can affect the flow of people [2]. 

There are four main types of elevator traffic modes; 

1- Up peak traffic. 

2- Down peak traffic. 

3- Lunch time (two way) traffic. 

4- Inter-floor traffic. 

In this research, we will focus on the incoming (up-peak) traffic, which states that the passengers 

arrives at the main terminal and then being transported to the upper floors, then the elevator 

returns to the terminal floor to pick up passengers again to the upper floors. 

1.2.2  Round trip time 

1.2.2.1 Definition of Round trip time 

The round trip time (RTT) is the time needed for a single elevator to complete a closed path in a 

building, or the time needed for the passengers to travel from the main floor (ground floor) to the 

highest reversal floor and back to the main floor. 

The round trip time starts from the door opening at main floor and ends with door opening, see 

figure 1.4. The highest reversal floor is the highest floor that the elevator reaches in one journey. 

The round trip time is the most important parameter in the design of modern elevator systems 

and in elevator traffic analysis. Modern buildings are becoming more complicated and more 

sophisticated. Therefore, it is an important task to develop accurate methods for the calculation 

of the round trip time that catches up with the development of the modern buildings. 
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Figure 1.4: the round trip time timeline during up-peak traffic 

 

It is clear from the graph that the round trip time in the up peak traffic contains four components; 

the time needed to collect passengers at the main floor, the time needed to deliver passengers to 

their destinations, the time spent in stopping at each destination floor and the time spent by the 

elevator while returning to the main floor. 

 

1.2.2.1 Importance and uses of Round trip time 

The RTT is important because it is used to indicate the elevator’s performance, because it is 

related to the handling capacity as shown in the following equation. 

U

PL
HC







300
%  

 

(1.1 )[10] 

Where : 

HC%: handling capacity. 

L : number of elevators. 

P: number of passengers inside the elevator. 

߬: round trip time. 

U: population of the building.  

 

RTT
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Also the round trip time is used to measure the interval [3], because the interval is calculated by 

dividing the round trip time by the number of elevators , see the following equation. 

ݐ݊݅ ൌ
߬
ܮ

 (1.2)[10] 

Where: 

L : number of elevators. 

߬: round trip time. 

Usually the performance of elevator system is determined in the incoming traffic situation, where 

passengers move from the ground floor to upper floors. That is because the incoming traffic is a 

difficult traffic situation. There are many methods for calculating the RTT in the incoming traffic 

situation. The simplest method is based on calculating the expected number of stops and the 

expected highest reversal floor and substituting them in the RTT equation [3].  

For more accurate result we should not just calculate the number of stops, but also we should 

calculate the probability of flow between each pair of floors for incoming traffic. Hence we will 

introduce another two methods for calculating round trip time which are the Markov Chain 

method and Monte Carlo Markov Chain method. Before discussing these three methods 

mentioned above we will give a brief description of the meaning of Markov chains and Monte 

Carlo Markov Chains.  
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Chapter two 

 

Introduction to Monte Carlo Markov Chain 
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2.1 Markov Chains 

A Markov chain, is a mathematical system that undergoes transitions from one state to another, 

see figure 2.1. The number of possible states is finite or countable. Markov chain is a random 

process usually described as memoryless; meaning that the next state depends only on the current 

state and does not depend on the sequence of events after it. This "memorylessness" is called the 

Markov property. Therefore, a Markov chain can be described as a random process with the 

Markov property. Markov chains are very useful and have many applications as statistical 

models of real-world processes.  

 

Figure 2.1: Markov Chain 

Often, the term "Markov chain" is used to mean a Markov process which has a discrete state-

space, meaning that the number of states is finite or countable. Usually a Markov chain is 

defined for a discrete set of times ( it is expressed as “ a discrete-time Markov chain” )[4] 

although some authors use the same expression where "time" can take continuous values.[5,6] The 

use of the term in Markov chain Monte Carlo method covers cases where the process is in 

discrete time (discrete algorithm steps) with a continuous state space.  

A discrete-time random process is a system which is in a certain state at each step, by going from 

one discrete step to another the state changes. The steps are often moments in time, but they can 

also refer to physical distance or any other discrete measurement; in other words, the steps are 

the integers, and the random process is a mapping of these steps to states. The Markov property 

means that the probability for the system at the next step depends only on the current state of the 

system, and not on the state of the system at previous steps. 
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The changes of states of the system are called ‘transitions’, and the probabilities of the various 

state-changes are called ‘transition probabilities’. The set of all states and transition probabilities 

completely makes a Markov chain. By convention, we assume all possible states and transitions 

have been included in the definition of the processes, so there is always a next state and the 

process goes on forever. 

The system changes randomly, therefore it is impossible to predict with certainty the state of a 

Markov chain at a given point in the future. But the statistical properties of the system's future 

can be predicted. It is these statistical properties that are important. 

2.1.1 Markov Chain Formal definition 

A Markov chain is a sequence of random variables X1, X2, X3, ... with the Markov property, such 

that, given the present state, the future and past states are independent. Formally,  

(2.1) 

Where: 

Pr: Probability. 

The possible values of Xi form a countable set S called the state space of the chain. Markov 

chains are often described by a directed graph, where the edges are labeled by the probabilities of 

going from one state to the other states as seen before in figure 2.1. The probability of going 

from state i to state j in n time steps is  

 
 (2.2) 

Note: The superscript (n) is an index and not an exponent. 

Where: 

Pij : is the probability of going from state i to state j in n time steps. 

The single-step transition is  

 
 (2.3) 
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2.1.2 Example of a Markov chain 

Markov chains are used in music composition or making a song melody. The states of the system 

are the note values and there’s a probability vector for each note, see figure2.2.  Completing a 

transition probability matrix, see Table 2.1. An algorithm is constructed to produce an output 

note values based on the transition matrix probabilities. [7] 

 
Figure 2.2: Markov chain for music notes 

 

Table2.1: transition probability matrix for the music notes A, C, E 
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2.1.3 Applications of Markov Chains 

Markov chains are applied to many different fields, some of them are: 

 Physics 

 Medicine 

 Information sciences 

 Queueing theory 

 Internet applications 

 Social sciences  

 Chemistry 

 Games 

 Music 

 Statistics 

 

 

2.2 Monte Carlo Markov Chains  
 

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling using 

probability distributions. It is based on constructing a Markov chain that has the desired 

distribution as its stationary distribution. The state of the chain after a large number of steps is 

then used as a sample of the desired distribution. As the number of steps increases, the quality of 

the sample improves. 

It is not hard to construct a Markov chain with the desired properties. The difficult thing is to 

determine how many steps are needed to get close to the stationary distribution with a small 

error. A good chain will reach the stationary distribution quickly starting from any position. 
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2.2.1 Applications of Monte Carlo Markov Chains 

MCMC methods are useful for simulating events with uncertainty in inputs and systems with a 

large number of coupled degrees of freedom. Fields of application include: 

 Physical sciences 

 Engineering 

 Computational biology 

 Games 

 Design and visuals 

 Finance and business 

 Telecommunications 

 Applied statistics 

In this paper the application of Markov chain methods used is statistics, because we will use 

Markov chain Monte Carlo method to generate a sequence of random numbers to reflect the 

probability distribution that is desired.  
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Chapter three 

 

Monte Carlo Markov Chain and Monte Carlo simulation 
methods to calculate Round trip time 
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3.1    Introduction 

Our objective is to calculate the round trip time under incoming traffic conditions and under the 

assumption of equal floor height, equal floor population, single entrance and that the top speed is 

attained in one floor journey. Many methods exist for calculating the round trip time; three 

methods are presented in this paper; 

1- Monte Carlo Markov Chain simulation method. 

2- Monte Carlo simulation method. 

3- The analytical method. 

 

3.2 Monte Carlo Markov Chain simulation method  

Monte Carlo Markov Chain simulation method contains four main steps; 

1- Forming the transition probability matrix. 

2- Generation of the random journey scenario. 

3- Calculation of the RTT. 

4- Trials of the procedure. 

3.2.1  The transition probability matrix 

The Monte Carlo Markov Chain method requires the development of the transition matrix for the 

probability of elevator’s movement between any two floors. We have two equations for the 

probability of elevator’s transition between two floors; the probability of elevator’s transition 

from the main floor to any upper floor, and the probability of elevator’s transition between any 

floor except the ground floor to any other floor. The origin floor is denoted as i and the 

destination floor is denoted as  j. meaning that the elevator moves from floor i to floor j. i and j 

take values from 0 (for the ground floor) to N (for the highest floor). 

3.2.1.1  The probability of elevator’s transition between any two floors. 

To derive the equation of the probability of elevator’s movement between floors i and j, the 

following probabilities are defined as follows. 
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 ijJP  is the probability of the elevator making a journey between floor i and floor j without 

stopping at any of the floors in between. 

 iSP is the probability of the elevator stopping at floor i. 

 jSP is the probability of the elevator stopping at floor j. 

 1,2,...,2,1  jjiiSP  is the probability of the elevator stopping at any of the floors between floors 

i and j.  

 iSP is the probability of the elevator not stopping at floor i. 

 jSP is the probability of the elevator not stopping at floor j. 

 1,2,...,2,1  jjiiSP  is the probability of the elevator not stopping at any of the floors between 

floors i and j. 

In order for an elevator to make a journey from floor i to floor j without stopping at any of the 

middle floors in between, the following statement should be true: 

The elevator stops at i 

AND 

The elevator stops at j 

AND 

The elevator does not stop at any of the in between floors (i+1, i+2, i+3….j-2, j-1) 

This statement could be expressed mathematically as follows: 

        1,2....2,1  jjiijiij SPSPSPJP
 

(3.1) [8] 

This could be rewritten as: 

          1,2....2,111  jjiijiij SPSPSPJP
 

(3.2) [8] 
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Expanding gives: 

             jijijjiiij SPSPSPSPSPJP   11,2....2,1  
(3.3) [8] 

 

            
     jjjiii

jjjiijjiiijjiiij

SPSPSP

SPSPSPSPSPJP









1,2....2,1

1,2....2,11,2....2,11,2....2,1

 
 (3.4) [8] 

But: 

      1,2....2,1,1,2....2,1   jjiiijjiii SPSPSP
 

 (3.5) [8] 

And: 

      jjjiijjjii SPSPSP ,1,2....2,11,2....2,1  
 

 (3.6) [8] 

And: 

        jjjiiijjjiii SPSPSPSP ,1,2....2,1,1,2....2,1  
 

 (3.7) [8] 

Substituting (3.5), (3.6) and (3.7) in (3.4) gives the following result: 

         jjjiiijjjiijjiiijjiiij SPSPSPSPJP ,1,2....2,1,,1,2....2,11,2....2,1,1,2....2,1  
 

(3.8) [8] 

For the case of incoming traffic only and a single entrance, the probability of not stopping at a 

number of floors can be derived as follows: 

         1,2.....2,1,1,21,1,2....2,1, /.....//   jjiiijiiiiiijjjiii SSPSSPSSPSPSP
 

(3.9) [8] 

Where the expression 
 1,2 /  iii SSP

 represents a conditional probability that stands for the 

probability that a stop will not take place on floor i+2 given that no stops have taken place on 

floors i and i+1. 
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Developing equation (3.9) further gives: 
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(3.10) [8] 

Where: 

U: total building population. 

Ui : ith floor population. 

Developing equation (3.10) further gives: 
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This leads to the general formula: 
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(3.15) [8] 

Substituting (3.15) in (3.8) gives equation (3.16) which performs the probabilities of elevator 

transitions between floor i and floor j when the current floor i is the ground floor (i=0): 
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(3.16) [8] 

But the probability that the elevator is stopping at floor i is: 

ሺ	 పܵഥሻ ൌ 	 ቈ1 െ ൬1 െ ܷ

ܷ
൰


    (3.17) [8] 

By dividing equation (3.16) by equation (3.17), we get equation (3.18) which performs the 

probabilities of elevator transition from floor i to floor j when the elevator is stopping at floor i : 

൯ࡶ൫	 ൌ 	 ቌ െ  ൬
ࢁ

ࢁ
൰

ି

ାୀ

ቍ



െ ቌ െ൬
ࢁ

ࢁ
൰

ି

ୀ

ቍ



െ ቌ െ  ൬
ࢁ

ࢁ
൰



ାୀ

ቍ



 ቌ െ൬
ࢁ

ࢁ
൰



ୀ

ቍ



 ቈ െ ൬ െ
ࢁ

ࢁ
൰


൙     (3.18) [8] 

Where: 

i: current state (floor). 

j: next state (floor). 

P: number of passengers. 

ܷ: each floor population. 

U: total population. 

J: journey. 
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3.2.1.2  The probability of elevator’s transition from the main floor to any other floor 

For the special case where the journey’s origin is the ground floor, the probability of a journey 

between the ground floor (floor 0) and floor j, can be developed as follows using equation (3.1) 

and substituting 0 for the value of i: 

        1,2....3,2,100  jjjj SPSPSPJP
 

(3.19) [8] 

But here the probability of stopping at the ground floor is 1 as the ground floor is the only 

entrance and the elevator must stop at this floor in every journey to pick up the passengers.  So 

the equation above becomes: 

           1,2....3,2,11,2....3,2,10 1   jjjjjjj SPSPSPSPJP
 

(3.20) [8] 

      jjjjj SPSPJP ,1....3,2,11,2....3,2,10  
 (3.21) [8] 

Substituting (3.15) in (3.21) gives: 
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(3.22) 
[8]

 

As long as the elevator is stopping at the ground floor and the elevator transition from the ground 

floor to floor j is to be found, then: 

 
ሺܵഥ	 ሻ ൌ 	 ቈ1 െ ൬1 െ ܷ

ܷ
൰


ൌ 1 (3.23) [8] 

By dividing equation (3.22) by equation (3.23) we get the probabilities of elevator transitions 

between the ground floor and floor j when the elevator is already stopping at the ground floor: 
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(3.24) 

[8]
 

By inserting the results obtained from equation (3.18) and equation (3.24) into a matrix, we have 

the transition matrix that represents the probabilities of elevator’s transitions between any two 

floors; the transition matrix is shown in Table 3.1. 
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Table 3.1: The elevator’s Transition probability matrix , G: ground floor, N: highest floor. 

  

G 

 

 

1 

 

2 

 

… 

 

… 

 

N-1 

 

N 

 

G 

 

 

0 

 

 ሻࡶሺࡼ
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0 

 

0 

 

0 

 

 

0 

 

0 

 

 ሻࡺࡶሺࡼ

 

N 

 

 

1 

 

0 

 

0 

 

0 

 

0 

 

0 

 

 0 

 

In the transition matrix, the rows represent the current states and the columns represent the future 

states. One of the conditions of using Monte Carlo Markov Chain simulation is that the transition 

matrix should be a square matrix and as seen from the transition matrix, that condition is 

obtained where the transition matrix is an ((ܰ  1ሻ ൈ ሺܰ  1ሻ) matrix, where N+1 is the total 

number of floors of the building.  Also the Markov Chain theory states that the summation of 

every row in the matrix should equal unity.  

As expected the diagonal values are all zeros because the elevator’s probability of transition from 

a floor to the same floor is zero as the elevator cannot move to any floor that it is already on 

[(ܲሺܬሻ ൌ 0]. As indicated from the incoming traffic the elevator transfers passengers only in the 

upper direction and while it moves down it only stops at the ground floor therefore the lower 

triangle values in the transition matrix are all zeros except the first row. For example the 
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probability of elevator’s movement from the second floor to the first floor equals zero [ܲሺܬଶଵሻ ൌ

0]. While the values of the first row of the lower triangle are not zeros because this row 

represents the probability of the elevator returning from its position to the ground floor. 

Furthermore, the probability of the elevator’s returning from the last floor (N) to the ground floor 

equals unity always, it is because at this position the elevator has no other options to move to 

except the ground floor. 

3.2.2   Random Scenario Generation 

After deriving the probability equations and arranging them in the transition matrix we can 

generate random scenarios for the elevator’s transition depending on the probability function. 

The random scenario is the elevator’s journey from the ground floor up to the destination floors 

and returning to the ground floor. The selection process of the destination floors depends on the 

transition matrix.  

Therefore we shall sketch the Probability Density Function (PDF) and the Cumulative 

Distribution Function (CDF) for every current floor recalling that rows of the transition matrix 

corresponds to current floors, i.e. first row corresponds to first floor and second row corresponds 

to second floor,…etc. 

Probability Density Function (PDF) is a function representing the relative distribution of 

frequency of the elevator’s transition between two floors, see figure 3.1.The probability density 

function is nonnegative everywhere, and its integral over the entire space is equal to one. PDF 

has the property that its integral from a to b is the probability that the variable lies in this interval, 

hence we also sketch the cumulative density function. Cumulative Distribution Function (CDF) 

is the sum or integral function of the probability density function, see figure 3.2. 
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Figure 3.1: PDF graph for the current floor i. 

 

Figure 3.2: CDF graph for the current floor i 

 

We start the elevator’s journey at the ground floor as the passengers enter the elevator only at the 

ground floor and then we take a random value between (0-1) and scan the CDF of the ground 

floor to find which interval this number belongs to; hence we determine the destination floor 

(future state). In the next step the previous future state floor becomes the current state floor so we 

take another random value between (0-1) and scan the CDF of the corresponding current floor 

and find the interval that this random value belongs to, to determine the future state floor. We 

continue this procedure till we return to the ground floor again; and at the end of this procedure 

we will have one random journey scenario. 

3.2.3  Calculation of the kinematics time  

The kinematics time is the time needed for the elevator to move between floors in the whole 

journey; i.e. to move from the ground floor up to the destination floors and then return from the 

highest reversal floor to the ground. To calculate the kinematics time we shall calculate the 

transition time for each transition between two floors, see figure 3.3. 



23 
 

 

 

Figure 3.3: Transition time and constant time 

The transition time is calculated using one of these equations: 
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  (3.27) 

Where : 

d: distance traveled [ m] 

v: velocity [m/s] 

a: acceleration [m/s2 ] 

j: Jerk [m/s3 ] 

Constant time Transition time 
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And because we have assumed that top speed is attained in one floor journey; i.e.
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, then we use the first formula. 

After calculating the transition times from the moment the elevator moves from the ground floor 

till it returns to it, the transition times should be summed to give the total kinematics time. 

߬ ൌݐ 
(3.28) 

Where: 

߬: Kinematics time. 

 .: Time needed for the elevator’s transition between two floorsݐ

 

3.2.4   Calculation of the constant time  

The constant time represents the time spent by the elevator while it is stopped. It includes the 

time needed for the elevator’s door to open and close and the time needed for the passengers to 

alight and board. It is calculated using this formula. 

߬ ൌ ܵ	ሺ	ݐௗ  ௗሻݐ  ܲ ሺ ݐ  ݐ ሻ (3.29) 

Where: 

 ௗ:  Door opening time. [s]ݐ

 ௗ: Door closing time. [s]ݐ

 : Passenger’s boarding time. [s]ݐ

 : Passenger’s alighting time. [s]	ݐ

P : number of passengers boarding the car. 

S: number of stops in one journey. 

 

Since S is the number of times the elevator stops in each journey, the value of S equals the 

number of random numbers we use to complete a whole journey.  
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3.2.5 Calculation of the round trip time 

The summation of the kinematics time and the constant time gives the round trip time. 

߬ ൌ 	 ߬  ߬                

 

(3.30) 

3.2.6 Trials of the procedure 

To obtain a RTT value that is very close to the actual value we iterate this procedure for a very 

large number of times and find the average of the RTTs found through this formula. 

߬௩ ൌ 	
߬ଵ  ߬ଶ ⋯ ߬

݊
 

(3.31) 

Where: 

݊: is the number of trials 

߬	: the	round	trip	time	found	in	the	݊௧	trial 

The accuracy of the Monte Carlo Markov chain simulation method depends on the number of 

trials. As the number of trials increases, the accuracy of the procedure increases and the round 

trip time calculated becomes closer to the exact value which therefore minimizes the percentage 

of error. 

3.3 Monte Carlo Simulation method 

The Monte Carlo method is quite similar to Monte Carlo Markov Chain method where both are 

based on the generation of random journey scenarios. In the Monte Carlo Markov chains method 

the random scenario generation was based on the transition probability matrix but in the Monte 

Carlo method the random scenario generation will be based on both the percentage of floor 

population and the number of passengers inside the car[9]. On the other hand, the two methods 

differ where in the Monte Carlo Markov Chain method the number of stops was randomly found 

and varies from a scenario to another. However, in the Monte Carlo method the number of stops 

is constant.  
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The number of passengers is found as the effective capacity of the car based on 80% car-rated 

capacity: 

           CCP  8.0  (3.32) [9]

Where  

CC: car capacity. 

The Monte Carlo simulation procedure includes four main steps; 

1- Drawing the PDF, CDF graphs of the floor population percentage. 

2- Generation of the random journey scenario. 

3- Calculation of the RTT. 

4- Trials of the procedure. 

3.3.1 Drawing the PDF and CDF graphs of the floor population percentage 

The probability of elevator’s transition between any two floors depends on the population 

distribution upon floors. By normalization of each floor population we can calculate the floor 

population percentage. Normalization of the floor population is shown in Table 3.2. 

Table 3.2: Normalization of the floor population, where U is the total population. 

Floor k Floor population Percentage of floor 

population 

1 u1 ݑଵൗܷ  

2 u2 ݑଶൗܷ  

. 

. 

. 

. 

. 

. 

. 

. 

. 

N-1 uN-1 ݑேିଵൗܷ  

N uN ݑே
ܷൗ  

 

Thus, the floor population percentage equals: 

ଵൗܷݑൣ ଶൗܷݑ … ேିଵݑ
ܷൗ

ேݑ
ܷൗ ൧  
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But in our case, we have assumed equal floor population, which means that the floor population 

percentage will be equal. 

After calculating the population percentage and calculating the number of passengers, PDF and 

CDF graphs of the floor population percentage are plotted, see figure3.4 and figure3.5. 

 

   Figure 3.4: PDF graph for the current floor i.          Figure 3.5: CDF graph for the current floor i

3.3.2 Generation of the random journey scenario 

Random numbers are all generated at once, it is necessary to generate (P) number of random 

values for each scenario, and then these random numbers is taken and the CDF is being scanned 

to find to which interval these numbers belong to, and thus the upper destination floors for all 

passengers are generated. Then, as the car becomes empty, the elevator will return to the ground 

floor. 

3.3.3 Calculation of the round trip time 

The procedure of calculating the value of the round trip time is the same as the procedure 

previously explained in the Monte Carlo Markov chain simulation method, where the summation 

of the kinematics time and constant time gives the round trip time of the random journey 

scenario. 

3.3.4 Trials of the procedure 

After calculating the round trip time of the random journey scenario this procedure must be 

repeated for a very large number of times, while the round trip time is found in each time. At the 
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end the average of the round trip times is found to get the round trip time of the system that will 

be close to the exact value. 

As the number of trials increases, the accuracy of this method increases. But, it is important to 

mention that the Monte Carlo simulation method needs more trials to get close to the round trip 

time exact value than the trials used in the Monte Carlo Markov chain simulation method. 

 

3.4 The analytical solution 

In this method the number of stops, the highest reversal floor and the number of passengers are 

found using some equations and are taken as the average number that occurs in one trip journey. 

The average number of stops in one trip journey is called the probable number of stops (S).  For 

equal floor population, the probable number of stops is calculated through this formula: 

















 

P

N

1
11NS  (3.33) [10] 

Where: 

N: the total number of floors. 

P:the number of passengers. 

The number of passengers (P) is taken as the effective capacity of the car based on 80% car-rated 

capacity, which is found in equation (15). 

As already mentioned before, the highest reversal floor is the highest floor that the elevator 

reaches in one trip journey. For equal floor population the highest reversal floor is found using 

this formula: 

P1N

1i N

i
NH 










  (3.34) [10] 

S, P and H do not need to be integers. These three parameters are then substituted in the RTT 

general equation. The round trip time is made up of three main components; the time spent at the 

ground floor collecting the passengers, the time needed for the elevator to travel to the upper 
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floors and deliver the passengers to their destinations, and the time needed for the elevator to 

return from the highest reversal floor to the ground floor, this is expressed in equation (3.35). 

HSG    
(3.35) [10] 

Where: 

߬ீ: The time spent at the ground floor. 

߬ௌ : The time spent travelling to the upper destination floors and delivering the passengers. 

߬ு : The time spent returning back to the ground terminal from the highest reversal floor. 

 

The time spent at the ground floor consists of the door opening time, the time needed for the 

passengers to enter the elevator, the door closing time and the motor starting delay minus the 

advanced door opening time, Therefore: 

   piaosddcdoG tPtttt   (3.36) [10] 

Where: 

tdo : Door opening time 

tdc: Door closing time 

tsd:Motor start delay 

tao: Advance door opening time 

tpi: Passenger boarding time 

P: number of passengers 

 

The time spent delivering the passengers to their destinations consist of two parts; the kinematics 

time and constant time. The kinematics time contains the time of transition from the ground floor 

to the highest reversal floor, while the constant time is the time caused by all the stops of the 

elevator. Each stop causes the elevator to decelerate, open its door, alight passengers, close its 

door and then accelerates again, therefore we have this formula: 

     poaosddcdo
f

decaccS tPttttS
v

dH
ttS 

















 
  

 

(3.37) [10] 

Where: 

S: probable number of stops. 
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H: highest reversal floor. 

df: floor height. 

tacc : the time taken to accelerate up to the top speed from standstill. 

tdec : the time taken to decelerate down from the top speed down to standstill. 

 .the rated speed : ݒ

tpo: Passenger alighting time. 

Rewriting the equation gives: 

   poaosddcdodecacc
f

S tPttttttS
v

d
H 










 
(3.38) 

[10]

 

Since we have assumed that the top speed is attained in one floor journey, then: 

j

a

a

v
tt decacc   

  (3.39) 

Therefore equation (3.35) becomes: 
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(3.40) [10] 

The third component of the round trip time is the time needed for the elevator to travel from the 

highest reversal floor to the ground floor, therefore: 
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(3.41) [10] 

The summation of these three components gives the round trip time: 
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(3.42)[10] 

The analytical solution method is very accurate and easy. But, it only exists for the general four 

assumptions or can be derived in the absence of one of these assumptions. However, if a 

combination of these assumptions were absent, it is very difficult to derive analytical equations 

for these cases as the problem becomes very complicated.   
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Chapter four 

 

Software Simulation 
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4.1 Introduction 

The use of Monte Carlo Markov Chain simulation has become practical only with the availability 

of powerful and fast computing programs that are readily accessible within desktops and laptops. 

This makes it easy to run tens of thousands of simulation runs in a fraction of a second. 

In this section, I will discuss the software implementation of the Monte Carlo Markov Chain 

simulation to calculate the elevator’s round trip time during up peak traffic conditions. 

MATLAB GUI was used in the software implementation. The software tool finds the round trip 

time using the Monte Carlo Markov chain method as well as Monte Carlo method and the 

analytical method. 

4.2 The MATLAB GUI round trip time simulation tool  

MATLAB GUI refers to Graphical User Interface and it is a MATLAB tool that allows users to 

perform tasks interactively through controls such as buttons and sliders. The MATLAB GUI 

allows the user to enter the building data and obtain the value of the round trip time using any of 

the three methods discussed before, with different levels of certainty chosen by the user by 

choosing the number of trials. The MATLAB GUI round trip time simulation tool is shown 

below in figure 4.1. 

 

Figure 4.1: The MATLAB GUI round trip time simulation tool 
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The inputs of the MATLAB GUI round trip time simulation tool are: 

1- The number of floors. 

2- Floor population. 

3- Number of passengers. 

4- Floor height. 

5- Speed of the elevator motor. 

6- Acceleration of the elevator motor. 

7- Jerk of the elevator motor. 

8- Time needed for passengers to board and alight. 

9- Time needed for car door to open and close. 

10-  Number of trials desired. 

The outputs of the MATLAB GUI round trip time simulation tool are: 

1- The round trip time value found using Monte Carlo Markov chain simulation. 

2- The round trip time value found using Monte Carlo simulation. 

3- The analytical round trip time value. 

4- The transition probability matrix. 

5- The transition percentage matrix “from Monte Carlo simulation results’. 

 

The Monte Carlo Markov Chain simulation tool contains five main blocks; 

1- The transition probability matrix generator. 

2- The random journey scenario generator. 

3- The kinematics time calculator. 

4- The constant time calculator. 

5- The round trip time calculator. 

The block diagram of the Monte Carlo Markov Chain simulation round trip time tool is shown in 

figure 4.2 below. 
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Figure 4.2: Block diagram of the Monte Carlo Markov Chain round trip time tool 

The Monte Carlo simulation tool contains five main blocks; 

1- The random journey scenario generator. 

2- Kinematics time calculator. 

3- The constant time calculator. 

4- The round trip time calculator. 

The block diagram of the Monte Carlo simulation round trip time tool is shown in figure 4.3 

below. 
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Figure 4.3: Block diagram of the Monte Carlo round trip time simulation tool 

The Monte Carlo simulation tool also produces the transition percentage from the Monte Carlo 

simulation to compare it with the transition probability matrix used in Monte Carlo Markov 

chain method. Results show that this transition percentage matrix is close to the transition 

probabilities matrix of the Monte Carlo Markov chain method. 

The simulation tool also calculates the round trip time using the analytical method, in order to 

compare the results found using Monte Carlo Markov chain simulation method and Monte Carlo 

simulation method with the analytical value. 
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5.1 Case study 1 

An example from a building is used to illustrate the use of Monte Carlo Markov chain 

simulation. The parameters for a typical building with equal floor heights and equal floor 

population are shown below. 

1- Number of floors above the ground floor equals 5. 

2- Car capacity is 6 persons. 

3- Finished floor level to finished floor level (floor height) is 4.5 m. 

4- Each floor population is 100 persons. 

5- Rated speed is 1.6 m.s-1. 

6- Rated acceleration is 1 m.s-2. 

7- Rated jerk is 1 m.s-3. 

8- Passenger alighting time equals 1.2 s. 

9- Passenger boarding time equals 1.2 s. 

10-  Door opening time equals 2 s. 

11- Door closing time equals 3 s. 

12- Start delay is 0. 

13- Advanced opening time is 0. 

We will start with the exact solution; a check needs to be carried out to ensure that the elevator 

will attain top speed in a one floor journey, as follows: 

݀ ൌ 4.5	  	ቆ
ܽଶ	ݒ 	ݒଶ	݆

ܽ	݆
ቇ ൌ ቆ

1	ሺ1.6ሻ 	1.6ଶ	ሺ1ሻ
1

ቇ ൌ 4.16	݉ 

So the top speed of 1.6 m/s is attained in a one-floor journey. In this case the time taken to 

complete a one-floor jump, tf will be: 

ݐ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5
1.6


1.6
1

1
1
ൌ  ݏ	5.4

The value of P based on 80% car-rated capacity is: 

ܲ ൌ ܥܥ	0.8 ൌ 0.8	ሺ6ሻ ൌ  ݏݎ݁݃݊݁ݏݏܽ	4.8
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The values of the probable number of stops (S), highest reversal floor (H) are as follows: 

ܵ ൌ ܰ ቆ1 െ ൬1 െ
1
ܰ
൰


ቇ ൌ 5ቆ1 െ ൬1 െ
1
5
൰
ସ.଼

ቇ ൌ 3.29 

ܪ ൌ ܰ െ ൬
݅
ܰ
൰


ൌ 5 െ൬
݅
5
൰
ସ.଼ସ

ୀଵ

ேିଵ

ୀଵ

ൌ 4.56 

Substituting in the round trip time equation gives: 

߬ ൌ ܪ	2 ቆ
݀
ݒ
ቇ 	ሺݏ  1ሻ. ቆݐ െ

݀
ݒ
 ௗݐ  ௗݐ  ௦ௗݐ െ ቇݐ  ܲ൫ݐ   ൯ݐ

																ൌ 2	ሺ4.56ሻ ቀ
ସ.ହ

ଵ.
ቁ  ሺ3.29  1ሻ ቀ5.4 െ

ସ.ହ

ଵ.
 2  3  0 െ 0ቁ  4.8ሺ1.2  1.2ሻ ൌ    ݏ	69.74

 

So, the value of the round trip time found using the exact value method equals 69.74 s. 

Using the Monte Carlo method, the number of passengers P equals the 80% car-rated capacity, 

hence P= 4.8. 

Then the PDF, CDF graphs for the floor population percentage should be sketched. As the floor 

population is equal for all floors then ܷ ൌ ܰ	ሺ100ሻ ൌ 100	ሺ5ሻ ൌ  ݏ݊ݏݎ݁	500

ܷ
ܷൗ ൌ 	

ଵ

ହ
ൌ

ଵ

ହ
ൌ 	0.2	, where k indicates floors from 1 to N. 

The PDF and CDF graphs are sketched as shown in figure 5.1 and figure 5.2. 

 

Figure 5.1: the probability density function of the floors population 

percentage 
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Figure 5.2: The cumulative density function of the floors population 

percentage 

 

The next step is to generate five random numbers between (0-1), the random numbers generated 

are: 0.391, 0.936, 0.12, 0.317, 0.081 

By scanning the CDF, the random generated floors based on the floor population percentage are: 

First floor, fifth floor, first floor, second floor and first floor. So there will be one stop on the first 

floor, one stop on the second floor and one stop on the fifth floor. Therefore, the number of stops 

equals three. 

The kinematics time for this journey scenario is: 

߬ ൌ 	 ߬ଵ  ߬ଵଶ  ߬ଶହ  ߬ହ 

Where:  

߬ଵ	: is the transition time between the ground floor and the first floor. 

߬ଵଶ: is the transition time between the first floor and the second floor. 

߬ଶହ: is the transition time between the second floor and the fifth floor. 

߬ହ: is the transition time between the fifth floor and the ground floor. 

Since the top speed is attained in one floor journey the transition times are calculated as follows: 

߬ଵ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5
1.6


1.6
1

1
1
ൌ  ݏ	5.41

߬ଵଶ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5
1.6


1.6
1

1
1
ൌ  ݏ	5.41

߬ଶହ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5	ሺ3ሻ
1.6


1.6
1

1
1
ൌ  ݏ	11.04
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߬ହ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5	ሺ5ሻ
1.6


1.6
1

1
1
ൌ  ݏ	16.66

The kinematics time equals to: 

߬ ൌ 	 ߬ଵ  ߬ଵଶ  ߬ଶହ  ߬ହଵ ൌ 5.41  5.41  11.04  16.66 ൌ  ݏ	38.52

The constant time for this journey scenario is calculated as follows: 

߬ ൌ ܵ	ሺ	ݐௗ 	ݐௗሻ  	ܲ	൫	ݐ  ൯	ݐ ൌ 3ሺ2  3ሻ  4.8ሺ1.2  1.2ሻ ൌ  ݏ	26.52

The round trip time for one trial equal: 

߬ ൌ ߬  ߬ ൌ 21.86  26.52 ൌ  	ݏ	65.04

Using the Monte Carlo software tool, the round trip time found for one trial equal:   51.195 s 

It is important to recall that the round trip time value found for one trial differ from trial to 

another as the procedure is totally random and depends on the set of random numbers generated 

each time. 

Using the Monte Carlo Markov chain method, first we shall calculate the transition matrix by 

calculating the probabilities of transitions using these two equations: 

The probability of elevator transition between any two floors: 

൯ܬ൫	 ൌ 	 ቌ1 െ  ൬ ܷ

ܷ
൰

ିଵ

ୀାଵ

ቍ



െ ቌ1 െ൬ ܷ

ܷ
൰
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ୀ

ቍ



െ ቌ1 െ  ൬ ܷ

ܷ
൰



ୀାଵ

ቍ



 ቌ1 െ൬
ܷ
ܷ
൰



ୀ

ቍ



 ቈ1 െ ൬1 െ ܷ

ܷ
൰


൙  

The probability of elevator transition between the main floor and any other floor: 
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The transition matrix is shown in table 5.1 below. 

Table5.1: the transition probability matrix of case study 1 

 0 1 2 3 4 5 

0 0 0.6574 0.2565 0.0738 0.0119 4.4151e-04 

1 6.7164e-04  0 0.6098 0.2779 0.0943 0.0174 

2 0.0180 0 0 0.6098 0.2779 0.0943 

3 0.1123 0 0 0 0.6098 0.2779 

4 0.3902 0 0 0 0 0.6098 

5 1 0 0 0 0 0 
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After that, PDF and CDF graphs should be sketched for each row of the matrix, they are shown 

in figures below (figures 5.3- 5.14 ). 

Figure 5.3: PDF of the ground floor Figure 5.4: CDF of the ground floor 

 

 

 

    

Figure 5.5: PDF of the first floor Figure 5.6: CDF of the first floor 
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Figure 5.7: PDF of the second floor Figure 5.8: CDF of the second floor 

 

 

 

 

Figure 5.9: PDF of the third floor Figure 5.10: CDF of the third floor 
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Figure 5.11: PDF of the fourth floor   Figure 5.12: CDF of the fourth floor 

 

 

 

  

Figure 5.13: PDF of the fifth floor   Figure 5.14: CDF of the fifth floor 
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Afterwards, the first random number is generated, the first random number is 0.869. By scanning 

the ground floor’s CDF we have the first random destination which is the second floor. Taking 

another random number, we have 0.935, by scanning the second floor’s CDF we have the next 

destination which is in this case is the fourth floor. Taking another random number we have 

0.995 by scanning the fourth floor’s CDF we get the next destination which in this case is the 

fifth floor. Taking another random number we have 0.691, by scanning the fifth floor CDF we 

have the next destination which is the ground floor.  

Now, the first journey scenario is generated; where the elevator will stop first at the second floor 

then at the fourth floor then at the fifth floor before it turns back to the ground floor, hence we 

number of stops for this journey equals three. Number of passengers equals three too. 

The kinematics time for this journey scenario is: 

߬ ൌ 	 ߬ଶ  ߬ଶସ  ߬ସହ  ߬ହ 

Where:  

߬ଶ	: is the transition time between the ground floor and the second floor. 

߬ଶସ: is the transition time between the second floor and the fourth floor. 

߬ସହ: is the transition time between the fourth floor and the fifth floor. 

߬ହ: is the transition time between the fifth floor and the ground floor. 

 

Since the top speed is attained in one floor journey the transition times are calculated as follows: 

߬ଶ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5ሺ2ሻ
1.6


1.6
1

1
1
ൌ  ݏ	8.225

߬ଶସ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5ሺ2ሻ
1.6


1.6
1

1
1
ൌ  ݏ	8.225

߬ସହ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5	ሺ1ሻ
1.6


1.6
1

1
1
ൌ  ݏ	5.41

߬ହ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5	ሺ5ሻ
1.6


1.6
1

1
1
ൌ  ݏ	16.66

The kinematics time equals to: 

߬ ൌ 8.225  8.225  	5.41  16.66 ൌ  ݏ	38.52

The constant time for this journey scenario is calculated as follows: 

߬ ൌ ܵ	ሺ	ݐௗ 	ݐௗሻ  	ܲ	൫	ݐ  ൯	ݐ ൌ 3ሺ2  3ሻ  3ሺ1.2  1.2ሻ ൌ  ݏ	22.2



45 
 

The round trip time for one trial equal: 

߬ ൌ ߬  ߬ ൌ 38.52  22.2 ൌ  	ݏ	60.72

Using the Monte Carlo Markov chain software tool, the round trip time found for one trial equal:   

62.445 s. It is important to recall that the round trip time value found for one trial differ from 

trial to another as the procedure is totally random and depends on the set of random numbers 

generated each time. 

Using the simulation software, we will get the results shown in the table 5.2 below. 

 

Table 5.2: the simulation software results for the values of round trip time using MCMC and MC 

methods for different number of trials 

Number of Trials RTT using MCMC RTT using Monte Carlo 

100 69.6813 65.4935 

1000 69.7998 66.1725 

10000 69.7188 67.6293 

100000 69.736 68.9655 

 

After that, the percentage of error for Monte Carlo Markov Chain method is calculated as 

follows: 

݁% ൌ	 ฬ
݁ݑ݈ܽݒ	ݐܿܽݔ݁ െ ݁ݑ݈ܽݒ	ܥܯܥܯ

݁ݑ݈ܽݒ	ݐܿܽݔ݁
ฬ 	ൈ 100% 

 Likewise, the percentage of error for Monte Carlo method is calculated as follows: 

 	

݁% ൌ 	 ฬ
݁ݑ݈ܽݒ	ݐܿܽݔ݁ െ ݁ݑ݈ܽݒ	ܥܯ

݁ݑ݈ܽݒ	ݐܿܽݔ݁
ฬ 	ൈ 100% 

The error percentage values are calculated and filled in table 5.3 below. 
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Table 5.3: percentage of error for Monte Carlo Markov chain method and Monte Carlo method 

for case study 1 

Number of Trials MCMC percentage of error Monte Carlo percentage of 

error 

100 0.086% 6.091% 

1000 0.084% 5.117% 

10000 0.032% 3.028% 

100000 7.743 ൈ 10ିଷ% 1.112% 

 

The percentage of error functions is sketched and shown in figure 5.15 below. 

 

Figure 5.15 : Percentage of error versus number of trials in log scale 
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5.2   Case study 2 

Another example from a building is used to illustrate the use of Monte Carlo Markov chain 

simulation. The parameters for a typical building with equal floor heights and equal floor 

population are shown below. 

1- Number of floors above the ground floor equals 10. 

2- Car capacity is 8 persons. 

3- Finished floor level to finished floor level (floor height) is 4.5 m. 

4- Each floor population is 150 persons. 

5- Rated speed is 1.6 m.s-1. 

6- Rated acceleration is 1 m.s-2. 

7- Rated jerk is 1 m.s-3. 

8- Passenger alighting time equals 1.2 s. 

9- Passenger boarding time equals 1.2 s. 

10-  Door opening time equals 2 s. 

11- Door closing time equals 3 s. 

12- Start delay is 0. 

13- Advanced opening time is 0. 

We will start with the exact solution; a check needs to be carried out to ensure that the elevator 

will attain top speed in a one floor journey, as follows: 

݀ ൌ 4.5	  	ቆ
ܽଶ	ݒ 	ݒଶ	݆

ܽ	݆
ቇ ൌ ቆ

1	ሺ1.6ሻ 	1.6ଶ	ሺ1ሻ
1

ቇ ൌ 4.16	݉ 

So the top speed of 1.6 m/s is attained in a one-floor journey. In this case the time taken to 

complete a one-floor journey, tf will be: 

ݐ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5
1.6


1.6
1

1
1
ൌ  ݏ	5.4

The value of P based on 80% car-rated capacity is: 

ܲ ൌ ܥܥ	0.8 ൌ 0.8	ሺ8ሻ ൌ  ݏݎ݁݃݊݁ݏݏܽ	6.4
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The values of the probable number of stops (S), highest reversal floor (H) are as follows: 

ܵ ൌ ܰ ቆ1 െ ൬1 െ
1
ܰ
൰


ቇ ൌ 10ቆ1 െ ൬1 െ
1
10
൰
.ସ

ቇ ൌ 4.905 

ܪ ൌ ܰ െ ൬
݅
ܰ
൰


ൌ 10 െ൬
݅
10
൰
.ସଽ

ୀଵ

ேିଵ

ୀଵ

ൌ 9.096 

Substituting in the round trip time equation gives: 

߬ ൌ ܪ	2 ቆ
݀
ݒ
ቇ 	ሺݏ  1ሻ. ቆݐ െ

݀
ݒ
 ௗݐ  ௗݐ  ௦ௗݐ െ ቇݐ  ܲ൫ݐ   ൯ݐ

																ൌ 2	ሺ9.096ሻ ቀ
ସ.ହ

ଵ.
ቁ  ሺ4.905  1ሻ ቀ5.4 െ

ସ.ହ

ଵ.
 2  3  0 െ 0ቁ  6.4ሺ1.2  1.2ሻ   

ൌ  ݏ	111.3996

So, the value of the round trip time found using the exact value method equals 111.3996 s. 

Using the Monte Carlo method, the number of passengers P equals the 80% car-rated capacity, 

hence P= 6.4. 

Then the PDF, CDF graphs for the floor population percentage should be sketched. As the floor 

population is equal for all floors then ܷ ൌ ܰ	ሺ150ሻ ൌ 150	ሺ10ሻ ൌ  ݏ݊ݏݎ݁	1500

ܷ
ܷൗ ൌ 	

ଵହ

ଵହ
ൌ

ଵ

ଵ
ൌ 	0.1	, where k indicates floors from 1 to N. 

The PDF and CDF graphs are sketched in figure 5.16 and figure 5.17 respectively. 

 

Figure 5.16: The probability density function of the floors population percentage 
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Figure 5.17: The Cumulative density function of the floors population percentage  

  

The next step is to generate five random numbers between (0-1), the random numbers generated 

are: 0.093, 0.029, 0.455, 0.324, 0.113, 0.829, 0.845, 0.104, 0.466, 0.431 

By scanning the CDF, the random generated floors based on the floor population percentage are: 

First floor, first floor, fifth floor, fourth floor, second floor, ninth floor, ninth floor, second floor, 

fifth floor and fifth floor. So there will be one stop on the first floor, one stop on the second 

floor, one stop on the fourth floor, one stop on the fifth floor and one stop on the ninth floor. 

Therefore, the number of stops equals five stops. 

The kinematics time for this journey scenario is: 

߬ ൌ 	 ߬ଵ  ߬ଵଶ  ߬ଶସ  ߬ସହ  ߬ହଽ  ߬ଽ 

Where:  

߬ଵ	: is the transition time between the ground floor and the first floor. 

߬ଵଶ: is the transition time between the first floor and the second floor. 

߬ଶସ: is the transition time between the second floor and the fourth floor. 

߬ସହ: is the transition time between the fourth floor and the fifth floor. 

߬ହଽ: is the transition time between the fifth floor and the ninth floor. 

߬ଽ: is the transition time between the ninth floor and the ground floor. 

Since the top speed is attained in one floor journey the transition times are calculated as follows: 

߬ଵ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5
1.6


1.6
1

1
1
ൌ  ݏ	5.41
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߬ଵଶ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
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1
1
ൌ  ݏ	5.41
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ൌ  ݏ	5.41

߬ହଽ ൌ
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ݒ

ݒ
ܽ

ܽ
݆
ൌ
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1
1
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߬ଽ ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5	ሺ10ሻ
1.6


1.6
1

1
1
ൌ  ݏ	30.725

 

The kinematics time equals to: 

߬ ൌ 	 ߬ଵ  ߬ଵଶ  ߬ଶସ  ߬ସହ  ߬ହଽ  ߬ଽ ൌ 5.41  5.41  8.225  5.41  13.85  30.725 

ൌ  ݏ69.03

The constant time for this journey scenario is calculated as follows: 

߬ ൌ ܵ	ሺ	ݐௗ 	ݐௗሻ  	ܲ	൫	ݐ  ൯	ݐ ൌ 5ሺ2  3ሻ  6.4ሺ1.2  1.2ሻ ൌ  ݏ	40.36

The round trip time for one trial equal: 

߬ ൌ ߬  ߬ ൌ 69.03  40.36 ൌ  	ݏ	109.39

Using the Monte Carlo software tool, the round trip time found for one trial equal: 102.01 s 

It is important to recall that the round trip time value found for one trial differ from trial to 

another as the procedure is totally random and depends on the set of random numbers generated 

each time. 

Using the Monte Carlo Markov chain method, first we shall calculate the transition matrix by 

calculating the probabilities of transitions using these two equations: 

The probability of elevator transition between any two floors: 
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The probability of elevator transition between the main floor and any other floor: 
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The transition probabilities are calculated and filled in the transition matrix. The transition matrix 

is shown in table 5.4 below. 
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Table 5.4: the transition probability matrix for case study 2 

 0 1 2 3 4 5 6 7 8 9 10 

0 0 0.4905 0.2697 0.1378 0.0640 0.0262 0.0090 0.0024 4.1676e-04 3.3221e-05 3.9811e-07

1 8.1165e-07 0 0.4500 0.2691 0.1504 0.0770 0.0350 0.0135 0.0040 7.8194e-04 6.6919e-05

2 6.7731e-05 0 0 0.4500 0.2691 0.1504 0.0770 0.0350 0.0135 0.0040 7.8194e-04

3 8.4967e-04 0 0 0 0.4500 0.2691 0.1504 0.0770 0.0350 0.0135 0.0040 

4 0.0049 0 0 0 0 0.4500 0.2691 0.1504 0.0770 0.0350 0.0135 

5 0.0184 0 0 0 0 0 0.4500 0.2691 0.1504 0.0770 0.0350 

6 0.0534 0 0 0 0 0 0 0.4500 0.2691 0.1504 0.0770 

7 0.1304 0 0 0 0 0 0 0 0.4500 0.2691 0.1504 

8 0.2808 0 0 0 0 0 0 0 0 0.4500 0.2691 

9 0.5500 0 0 0 0 0 0 0 0 0 0.4500 

10 1 0 0 0 0 0 0 0 0 0 0 

 

After that, PDF and CDF graphs should be sketched for each row of the matrix, they are shown 

in figures below (figures 5.18- 5.39). 

 

 

Figure 5.18: PDF of the ground floor Figure 5.19: CDF of the ground floor 
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Figure 5.20: PDF of the first floor Figure 5.21: CDF of the first floor 

 

 

 

 

Figure 5.22: PDF of the second floor Figure 5.23: CDF of the second floor 
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Figure 5.24: PDF of the third floor Figure 5.25: CDF of the third floor 

 

 

 

Figure 5.26: PDF of the fourth floor Figure 5.27: CDF of the fourth floor 
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Figure 5.28: PDF of the fifth floor Figure 5.29: CDF of the fifth floor 

 

 

 

Figure 5.30: PDF of the sixth floor Figure 5.31: CDF of the sixth floor 
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Figure 5.32: PDF of the seventh floor Figure 5.33: CDF of the seventh floor 

 

 

 

Figure 5.34: PDF of the eighth floor Figure 5.35: CDF of the eighth floor 
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Figure 5.36: PDF of the ninth floor Figure 5.37: CDF of the ninth floor 

 

 

Figure 5.38: PDF of the tenth floor Figure 5.39: CDF of the tenth floor 
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Afterwards, the first random number is generated; the first random number is 0.684. By scanning 

the ground floor’s CDF we have the first random destination which is the second floor. Taking 

another random number, we have 0.492, by scanning the second floor’s CDF we have the next 

destination which is in this case is the fourth floor. Taking another random number we have 

0.999 by scanning the fourth floor’s CDF we get the next destination which in this case is the 

tenth floor. Taking another random number we have 0.057, by scanning the tenth floor CDF we 

have the next destination which is the ground floor.  

Now, the first journey scenario is generated; where the elevator will stop first at the second floor 

then at the fourth floor then at the tenth floor before it turns back to the ground floor, hence the 

number of stops for this journey equals three. Number of passengers equals three too. 

The kinematics time for this journey scenario is: 

߬ ൌ 	 ߬ଶ  ߬ଶସ  ߬ସିଵ  ߬ଵି 

Where:  

߬ଶ	: is the transition time between the ground floor and the second floor. 

߬ଶସ: is the transition time between the second floor and the fourth floor. 

߬ସିଵ: is the transition time between the fourth floor and the tenth floor. 

߬ଵି: is the transition time between the tenth floor and the ground floor. 

Since the top speed is attained in one floor journey the transition times are calculated as follows: 

߬ଶ ൌ
݀
ݒ
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݆
ൌ
4.5ሺ2ሻ
1.6


1.6
1
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ൌ  ݏ	8.225

߬ସିଵ ൌ
݀
ݒ

ݒ
ܽ
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݆
ൌ
4.5	ሺ6ሻ
1.6


1.6
1

1
1
ൌ  ݏ	19.475

߬ଵି ൌ
݀
ݒ

ݒ
ܽ

ܽ
݆
ൌ
4.5	ሺ10ሻ
1.6


1.6
1

1
1
ൌ  ݏ	30.725

The kinematics time equals to: 

߬ ൌ 8.225  8.225  19.475  30.725 ൌ  ݏ	66.65

The constant time for this journey scenario is calculated as follows: 

߬ ൌ ܵ	ሺ	ݐௗ 	ݐௗሻ  	ܲ	൫	ݐ  ൯	ݐ ൌ 3ሺ2  3ሻ  3ሺ1.2  1.2ሻ ൌ  ݏ	22.2
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The round trip time for one trial equal: 

߬ ൌ ߬  ߬ ൌ 38.52  22.2 ൌ  	ݏ	88.85

Using the Monte Carlo Markov chain software tool, the round trip time found for one trial equal:   

109.61 s. It is important to recall that the round trip time value found for one trial differ from 

trial to another as the procedure is totally random and depends on the set of random numbers 

generated each time. 

Using the simulation software, we will get the results shown in the table 5.5 below. 

 

Table 5.5: the simulation software results for the values of round trip time using MCMC and MC 

methods for different number of trials for case study 2 

Number of Trials RTT using MCMC RTT using Monte Carlo 

100 108.3428 s 106.0108 s 

1000 110.3737 s 107.9322 s 

10000 111.4742 s 109.5695 s 

100000 111.381 s 110.3372 s 

 

After that, the percentage of error for Monte Carlo Markov Chain method is calculated as 

follows: 

݁% ൌ	 ฬ
݁ݑ݈ܽݒ	ݐܿܽݔ݁ െ ݁ݑ݈ܽݒ	ܥܯܥܯ

݁ݑ݈ܽݒ	ݐܿܽݔ݁
ฬ 	ൈ 100% 

 Likewise, the percentage of error for Monte Carlo method is calculated as follows: 

 	

݁% ൌ 	 ฬ
݁ݑ݈ܽݒ	ݐܿܽݔ݁ െ ݁ݑ݈ܽݒ	ܥܯ

݁ݑ݈ܽݒ	ݐܿܽݔ݁
ฬ 	ൈ 100%	

 

The error percentage values are calculated and filled in table 5.6 below. 
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Table  5.6: percentage of error for Monte Carlo Markov chain method and Monte Carlo method 

for case study 2 

Number of Trials MCMC percentage of error Monte Carlo percentage of 

error 

100 2.744% 4.837% 

1000 0.921% 3.113% 

10000 0.067% 1.643% 

100000 0.017% 0.954% 

The percentage of error functions is sketched and shown in figure 5.40 below. 

 

Figure 5.40 : Percentage of error versus number of trials in log scale 

As clear from the results of the two case studies, Monte Carlo Markov Chain method is better 
than Monte Carlo method, as the Monte Carlo Markov chain method gave closer results to the 
exact value and a less percentage of error than the Monte Carlo method. It is also clear that the 
Monte Carlo Markov Chain methods approaches the exact value faster than the Monte Carlo 
method that needs larger number of trials to approach the exact value. 
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5.3 Conclusions and future work 

 

The design of the elevator systems involves the selection of the number, capacity and speed of 

the elevators to achieve the required performance, and it relies on the calculation of the round 

trip time, as the round trip time gives a good measure for both the quantity and quality of service, 

as both the interval and the handling capacity calculations depends on the round trip time value. 

Therefore, it is important to derive accurate and easy methods to calculate the round trip time. 

The Monte Carlo Markov chain simulation method was introduced as a methodology to arrive at 

the value of the round trip time during incoming traffic conditions in the simplest case which 

assumes equal floor population, equal floor heights, one entrance floor and a top speed that is 

attained in a one floor journey. The advantages of the Monte Carlo Markov chain method is the 

simplicity of programming and accuracy. 

 

Also, the Monte Carlo simulation method was introduced as a simulation method for calculating 

the round trip time. Monte Carlo Markov chain simulation method is better than Monte Carlo 

simulation method as the first one is faster and needs less number of trials to approach the exact 

value, and it also gives a less percentage or error. 

 

Furthermore, If any or a combination of the general assumptions of; equal floor population, equal 

floor height, single entrance and the top speed attained in a one floor journey, was dropped, 

Monte Carlo Markov chain simulation method can be easily developed to cover all of these 

cases. However, the analytical method cannot deal with a combination of these special cases as 

the problem becomes very complicated. So, the development of the Monte Carlo Markov chain 

simulation method can give a good alternative for the analytical method for calculating the round 

trip time when any or all of the general four assumptions does not exist. 

Likewise, in the future Monte Carlo Markov chain simulation method can be developed to a 

Markov Chain method which only depends on the Markov chains to arrive at the value of the 

round trip time depending only on the steady state probabilities. 
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Appendix 

Matlab GUI Code for the software tool 

 
N = str2num(get(handles.edit1,'String')); 
u = str2num(get(handles.edit2,'String')); 
Pa = str2num(get(handles.edit3,'String')); 
tpi = str2num(get(handles.edit4,'String')); 
tpo = str2num(get(handles.edit5,'String')); 
tdo = str2num(get(handles.edit6,'String')); 
tdc = str2num(get(handles.edit7,'String')); 
  
U = u*N; 
set (handles.edit8,'String',num2str(U)); 
  
%--------------------------------------------------------------- 
%transition Matrix (A)  Construction 
%--------------------------------------------------------------- 
  
A = zeros(N+1); 
A(N+1,1)= 1; 
  
for i=1:N 
    for j = 1:N+1 
             
        if (i<j) 
             
            if(i==1) 
                c1=0;c2=0; 
                for k=1:j-2 
                    c1 = c1 + u/U; 
                end 
                for k=1:j-1 
                    c2 = c2 + u/U; 
                end 
                 
                 A(i,j) = ((1-c1)^Pa - (1-c2)^Pa); 
             
            else 
                k1=0;k2=0;k3=0;k4=0; 
                for k=i:j-2 
                    k1 = k1 + u/U; 
                end 
                for k=i-1:j-2 
                    k2 = k2 + u/U; 
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                end 
                for k=i:j-1 
                    k3 = k3 + u/U; 
                end 
                for k=i-1:j-1 
                    k4 = k4 + u/U; 
                end 
                     
                A(i,j) = ((1-k1)^Pa - (1-k2)^Pa -(1-k3)^Pa +(1-
k4)^Pa)/(1-(1-u/U)^Pa); 
            end 
             
        end 
    end 
end 
  
for i = 2:N 
    Row_sum = 0; 
    for k = 2:N+1 
        Row_sum = Row_sum + A(i,k); 
    end 
     
    A(i,1) = 1- Row_sum ; 
end 
  
A 
  
set(handles.uitable1, 'Data', A);  
  
%--------------------------------------------------------------- 
%steady state Probability (pi) 
%--------------------------------------------------------------- 
IM = A-eye(N+1); 
IM(:,N+1)=  ones(N+1,1); 
R = zeros(1,N+1); 
R(1,N+1) = 1; 
  
X = R*inv(IM); 
set(handles.uitable2, 'Data', X);  
  
%--------------------------------------------------------------- 
%Analytical Solution 
%--------------------------------------------------------------- 
  
df = str2num(get(handles.edit18,'String')); 
v =str2num(get(handles.edit19,'String')); 
a = str2num(get(handles.edit20,'String')); 
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je = str2num(get(handles.edit21,'String')); 
  
tf = df/v + v/a + a/je ; 
tv = df/v ; 
ts = tf - tv + tdo +tdc; 
  
S2 = N*(1-(1- (1/N))^Pa); 
set (handles.edit25,'String',num2str(S2)); 
  
  
im2=0; 
for k =1:N-1 
   im2 = im2 + (k/N)^Pa; 
end 
  
H = N - im2; 
  
T2 = 2*H*tv + ts*(S2+1) + Pa*(tpi +tpo); 
  
set (handles.edit26,'String',num2str( T2 )); 
  
%---------------------------------------------------------------
%simulation #1 : MARKOV simulation 
%--------------------------------------------------------------- 
Nrpt = str2num(get(handles.edit31,'String')); 
  
Tau_sum = 0; 
for repeat = 1:Nrpt 
     
s=0; 
state1in = 0; 
state2 = 1948; 
Tk = 0; 
  
while(state2 ~= 0) 
    s = s+1; 
     
state1 = state1in +1; 
rndm = rand(1); 
summ = 0; 
  
  
for k =1:size(A,1)+1 
    if summ >= rndm 
        state2 = k-2 ; 
        break; 
    else 
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        summ = summ + A(state1 , k); 
    end    
end 
  
d = abs(state2 - state1in)*df; 
  
direction = (state2 - state1in); 
  
%------------------------------------------------------------ 
%time from floor to floor 
%------------------------------------------------------------ 
        if d >= (((a^2)*v + (v^2)*je)/(a*je)) 
        t_a2b = d/v + v/a + a/je; 
     
        elseif d < (2*a^3/je^2) 
        t_a2b = (32*d/je)^(1/3); 
     
        else 
        t_a2b = a/je + ((4*d/a + (a/je)^2)^(0.5)); 
  
        end 
%------------------------------------------------------------ 
Tk = Tk + t_a2b; 
state1in = state2; 
  
end 
  
t_constant = Pa*(tpi + tpo) + (s)*(tdo+tdc); 
Tau = t_constant + Tk; 
Tau_sum = Tau_sum + Tau; 
end 
  
avg_Tau = Tau_sum / Nrpt 
  
set (handles.edit33,'String',num2str( avg_Tau )); 
  
  
%--------------------------------------------------------------- 
%simulation #2 :Monte Carlo 
%--------------------------------------------------------------- 
Tau2_sum = 0; 
B = zeros(N+1);% # Passengers matrix 
T = zeros(N+1);%# transitions matrix 
  
for repeat = 1:Nrpt 
         
Random = sort( rand(1,Pa) ); 
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Randomx = 0; 
Floor = [0, floor(N*Random +1) ]; 
transition = 0; 
  
for k = 1:Pa 
  
   if ( Floor(k+1) ~= Floor(k) ); 
        transition(length(transition)+1) = Floor(k+1); 
    end 
end 
  
d= [diff(transition),max(transition)]*df; 
    %--------------------------------------------------------- 
    %time from Floor to Floor 
    %--------------------------------------------------------- 
Tk2 = 0; 
for ln = 1: size(d,2) 
    d_ln = d(ln);  
     
        if d_ln >= ((a^2)*v + (v^2)*je)/(a*je) 
        t_a2b = d_ln/v + v/a + a/je ; 
        elseif d_ln < (2*a^3/je^2) 
        t_a2b = (32*d_ln/je)^(1/3); 
        else 
        t_a2b = a/je + ((4*d_ln/a + (a/je)^2)^(0.5)); 
        end 
   
        Tk2 = Tk2 + t_a2b; 
end 
%------------------------------------------------------------ 
Splus1 = size(transition,2); 
t_constant2 = Pa*(tpi + tpo) + (Splus1)*(tdo+tdc); 
Tau2 = t_constant2 + Tk2; 
Tau2_sum = Tau2_sum + Tau2; 
  
  
%------------------------------------------------------------ 
%Monte Carlo simulated Matrix 
%------------------------------------------------------------ 
  
%B = zeros(N+1); initially 
transition(length(transition)+1) = 0; 
%B is the number of passengers moved from floor =(row-1) to 
floor =(column-1)  
%T is the number of transitions from floor =(row-1) to floor 
=(column-1)  
for j=1:length(transition)-1 
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B(transition(j)+1,transition(j+1)+1) = 
B(transition(j)+1,transition(j+1)+1) + sum(Floor == 
transition(j+1)); 
T(transition(j)+1,transition(j+1)+1) = 
T(transition(j)+1,transition(j+1)+1) + 1; 
end 
%B 
%T 
%------------------------------------------------------------ 
%------------------------------------------------------------ 
end 
B 
T=T/Nrpt 
set(handles.uitable4, 'Data', T); 
%------------------------------------------------------------ 
%------------------------------------------------------------ 
avg_Tau2 = Tau2_sum / Nrpt 
  
set (handles.edit34,'String',num2str( avg_Tau2 )); 
  
set (handles.text44,'String','ATH'); 
%------------------------------------------------------------ 
%------------------------------------------------------------ 
  
%Markov from Monte Carlo 
  
%------------------------------------------------------------- 
%transition Matrix (P)  Construction 
%------------------------------------------------------------- 
  
for i=1:N+1 
    Added(i)= sum(T(i,:)); 
    %T(i,1)=T(i,1) + 1- sum(T(i,:)); 
end 
Production = 1/min(Added); 
T(2:N+1,:)=T(2:N+1,:)*Production; 
P = T 
%set(handles.uitable7, 'Data', A);  
  
%------------------------------------------------------------- 
%simulation #1 : MARKOV simulation 
%------------------------------------------------------------- 
Nrpt = str2num(get(handles.edit31,'String')); 
  
Tau_sum = 0; 
for repeat = 1:Nrpt 
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s=0; 
state1in = 0; 
state2 = 1948; 
Tk = 0; 
  
while(state2 ~= 0) 
    s = s+1; 
state1 = state1in +1; 
rndm = rand(1); 
summ = 0; 
for k =1:size(P,1)+1 
    if summ >= rndm 
        state2 = k-2; 
        break; 
    else 
        summ = summ + P(state1 , k); 
    end    
end 
d = abs(state2 - state1in)*df; 
direction = (state2 - state1in); 
%------------------------------------------------------------ 
%time from floor to floor 
%------------------------------------------------------------ 
        if d >= (((a^2)*v + (v^2)*je)/(a*je)) 
        t_a2b = d/v + v/a + a/je; 
        elseif d < (2*a^3/je^2) 
        t_a2b = (32*d/je)^(1/3); 
       else 
        t_a2b = a/je + ((4*d/a + (a/je)^2)^(0.5)); 
        end 
%------------------------------------------------------------ 
Tk = Tk + t_a2b; 
state1in = state2; 
end 
t_constant = Pa*(tpi + tpo) + (s)*(tdo+tdc); 
Tau = t_constant + Tk; 
Tau_sum = Tau_sum + Tau; 
end 
avg_Tau = Tau_sum / Nrpt 
 

 


